
Hug Reports: Supporting Expression of Appreciation between
Users and Contributors of Open Source Software Packages

PRANAV KHADPE∗, Carnegie Mellon University, USA
OLIVIA XU∗, Carnegie Mellon University, USA
GEOFF KAUFMAN, Carnegie Mellon University, USA
CHINMAY KULKARNI, Emory University, USA

Fig. 1. In this paper, we describe a field trial of the Hug Reports technology probe. The probe consists of two
main components: an extension for the Visual Studio Code editor and a notification delivered via email. (1)
The extension detects imported Python and JavaScript packages in the current file and renders a button on
each line that interfaces with an imported package. Clicking the button on any line logs a thanks, and the code
on the line specifies the object of the user’s appreciation: they can express appreciation for the entire package
or specific modules, or functions. (2) With each thanks, users can also include a personal note. (3) After a 3
week deployment of the extension with 18 users, thanks were manually matched to the corresponding source
code repository/file, from where we identified the 20 most recent contributors of the thanked work. (4) These
contributors were contacted via an email containing the Hug Report notification which displayed the work
for which they had been thanked. The email also contained a description of our project and an invitation to
participate in the study.

∗Both authors contributed equally to this research.

Authors’ Contact Information: Pranav Khadpe, pkhadpe@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA; Olivia Xu, okx@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Geoff Kaufman, gfk@
cs.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Chinmay Kulkarni, chinmay.kulkarni@emory.edu,
Emory University, Atlanta, Georgia, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2025 Copyright held by the owner/author(s).
ACM 2573-0142/2025/4-ARTCSCW099
https://doi.org/10.1145/3710997

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://doi.org/10.1145/3710997


CSCW099:2 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Contributors to open source software packages often describe feeling discouraged by the lack of positive
feedback from users. This paper describes a technology probe, Hug Reports, that provides users a communica-
tion affordance within their code editors, through which users can convey appreciation to contributors of
packages they use. In our field study, 18 users interacted with the probe for 3 weeks, resulting in messages
of appreciation to 550 contributors, 26 of whom participated in subsequent research. Our findings show
how locating a communication affordance within the code editor, and allowing users to express appreciation
in terms of the abstractions they are exposed to (packages, modules, functions), can support exchanges of
appreciation that are meaningful to users and contributors. Findings also revealed the moments in which
users expressed appreciation, the two meanings that appreciation took on—as a measure of utility and as an
act of expressive communication—and how contributors’ reactions to appreciation were influenced by their
perceived level of contribution. Based on these findings, we discuss opportunities and challenges for designing
appreciation systems for open source in particular, and peer production communities more generally.

CCS Concepts: • Human-centered computing → Collaborative and social computing; Open source
software; Field studies.

Additional Key Words and Phrases: appreciation systems, positive reinforcement, online communities, open
source, technology probe

ACM Reference Format:
Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni. 2025. Hug Reports: Supporting Expression
of Appreciation between Users and Contributors of Open Source Software Packages. Proc. ACM Hum.-Comput.
Interact. 9, 2, Article CSCW099 (April 2025), 32 pages. https://doi.org/10.1145/3710997

1 Introduction
Users are far more likely to reach out when they have a complaint. If everything works
great, they tend to stay silent. It can be discouraging to see a growing list of issues without
the positive feedback showing how your contributions are making a difference.

—Abby Cabunoc Mayes, Maintaining Balance for Open Source Maintainers [39]
In a sense, these GitHub notifications are a constant stream of negativity about your
projects. Nobody opens an issue or a pull request when they’re satisfied with your work.
They only do so when they’ve found something lacking. Even if you only spend a little bit
of time reading through these notifications, it can be mentally and emotionally exhausting.

—Nolan Lawson, What it Feels Like to be an Open-Source Maintainer [32]
Contributors to open source software packages rarely receive positive feedback from users. Today,

many open source packages have become vital digital infrastructure that governments, private
companies, and individual developers rely on [14]. However, the contributors who develop and
maintain these packages—who are often volunteers [9, 15, 65]—describe how their interactions with
those who benefit from their labor tend to be overwhelmingly critical and negative [40]. Like the
opening quotes, many contributors have talked about the rarity of positive feedback in blog posts,
talks, and social media posts, describing how it can feel exhausting and demotivating [21, 32, 39, 40].
Lack of positive feedback is often discussed as one of the factors leading to contributor burnout and
disengagement [39], which have become growing concerns within communities of contributors [39]
and have also been the focus of recent CSCW research [25, 41]. The concerns are amplified by the
fact that burnout and disengagement increase the risk of critical projects slowing down or even
being abandoned [11].

Why is appreciation rare? We suggest that many barriers to expressing appreciation stem from
the fact that where users might feel appreciation (in their development environment) and what
they might feel appreciation towards (a package, its modules, or its functions) is detached from
where contribution activities occur (social coding platforms like GitHub) and what its units are
(individual commits or pull requests). This impedes appreciation in several ways. To start with,

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://doi.org/10.1145/3710997


Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:3

(1) users must incur effort to navigate to existing communication channels and to locate whom
to thank. Channels for communicating with contributors, such as affordances available through
social coding platforms, are detached from users’ development environments. So, establishing
contact with contributors requires users to leave their development environment, and navigate
to communication channels elsewhere. Further, affordances of social coding platforms that allow
users to direct interactions towards authors of individual commits or pull requests quickly become
ill-suited when a user wants to thank developers of the entire package or its modules. This is because
a package or module may combine several commits and pull requests, and contacting authors
of each atomic contribution can be prohibitively effortful. Even though social coding platforms
provide other channels through which users can notify projects as a whole, (2) these channels de-
emphasize appreciation because they were primarily designed to coordinate contribution activities.
For instance, the primary channel through which users interact with project contributors on GitHub
is by creating “Issues”, which are intended to “track ideas, feedback, tasks, or bugs for work on
GitHub”. The feature’s advertised use (and name) normatively encourages communication around
areas of improvement rather than appreciation. Finally, (3) when users work with a package in
the development environment, the contributors and their labor are left out of focus. Today, it is
possible to discover, download, and use a software package without ever learning the contributors’
identity, much less interacting with them. The impersonal way in which packages are consumed
foregrounds the technical capabilities of the software while obscuring contributors’ labor, promoting
an ignorant or asocial orientation towards contributors [57]. Because the labor of contributors is
almost forgotten from the development environment, users may fail to feel a sense of personal
obligation or appreciation towards contributors.

1.1 Approach
As one solution to encourage appreciation, we arrived at a conceptual design proposal for the
Hug Reports system, a unidirectional communication system that would afford users the ability to
select a package currently in use and direct a thanks message towards contributors, from within
their code editors. The affordance would allow users to direct thanks towards entire packages
(e.g. matplotlib), their modules (e.g. pyplot), or specific functions within those modules (e.g.
pyplot.scatter). Our hope was that locating a communication affordance within the code editor
and allowing users to express appreciation in terms of the abstractions they were exposed to
(packages, modules, or functions), would lower the effort in communicating appreciation and that
the affordance’s material presence within the editor would remind users of the contributors behind
the packages they use. By explicitly accounting for the manner in which software is ultimately used
in the development environment, this approach departs from prior attempts to support appreciation
in open source [44, 62]. By capturing appreciation in terms of abstractions of use rather than
low-level units of work, this approach is also distinct from other appreciation systems in peer
production that capture appreciation towards individual units of contribution [38]. Given these
differences from pior work, we wanted to investigate the merits of the approach. At the same
time, due to our departure from previous approaches, we anticipated that unexpected cross-cutting
constraints and requirements would reveal themselves when an end-to-end system is deployed.

Therefore, in this paper, we describe a field study of the Hug Reports technology probe (Figure 1).
We developed a barebones version of Hug Reports as a technology probe [26] to investigate: (1) how
key decisions of Hug Reports affected the expression of appreciation; (2) how appreciation was felt,
expressed, received, and interpreted; and (3) the opportunities that users and contributors identified
for further supporting exchanges of appreciation. The probe consists of two main components: an
extension for the Visual Studio Code editor through which users can express their appreciation
and a notification delivered to contributors via email. The extension renders a button on every line

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:4 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

of code that interfaces with an imported Python or JavaScript package, through which users could
log a one-bit thanks and optionally a personal note, corresponding to the package (or its specific
modules, classes, or functions) invoked on that line. We deployed the extension for 3 weeks with 18
developers, following which we sent notifications to the 550 contributors whose work was thanked
during the deployment. 26 of these contributors participated in our subsequent research activities.

1.2 Contributions
Our study had several key takeaways, including that Hug Reports encouraged appreciation that
was meaningful to users and contributors, that appreciation was interpreted both as a measure of
utility and as an act of expressive communication, and that contributors’ reactions to appreciation
were influenced by how much they felt they had contributed to what was thanked. In addition to
this, our study revealed patterns in when users expressed appreciation. Based on these findings,
we discuss the opportunity and limitation of capturing appreciation towards abstractions of use
(packages, modules) rather than low-level units of work (individual commits or pull requests), and
we discuss opportunities for encouraging appreciation in software development practice.

To summarize, this paper makes the following contributions:
• Through the development and deployment of the Hug Reports technology probe, we provide
preliminary evidence that locating a communication affordance within the code editor and
allowing users to express appreciation in terms of the abstractions they are exposed to, can
encourage exchanges of appreciation towards contributors.

• We extend prior literature on appreciation in open source by contributing insights into how
appreciation is experienced and expressed by users in practice.

• We contribute new design knowledge on designing appreciation systems in peer production
by exploring the implications of re-orienting appreciation around abstractions of use.

2 Background and Related Work
In this section, we first describe how open source software packages are developed and distributed,
with a focus on the configuration of interlinking social practices and technical systems involved.
Then, by considering the interaction of social and technical factors, we describe the barriers that
prevent expression of appreciation. We then discuss how our work departs from prior appreciation
systems. Finally, we discuss how the meaningfulness of appreciation can be preserved even as we
attempt to lower the effort of expressing appreciation.

2.1 The sociotechnical system within which modern open source packages are
produced and used

A central premise of CSCW research is that social practices and technical objects can’t be fully
understood in isolation; they influence each other [6]. The critical interaction between social and
technical factors is captured in the concept of a sociotechnical system [10] where analysis is not at
the level of individual technologies but instead considers the broader coherent system of technical
objects and human practices. So, to understand barriers to appreciation, we begin by demarcating
the sociotechnical system we are designing within. In this work, we focus on open source software
projects that are hosted on GitHub1, and that are made available to users as packages. Here, we
briefly describe how these projects are hosted, developed, and distributed with a focus on both the
social practices and the technical objects.

Open source software projects produce software that is licensed as ‘open source’, granting future
users the rights to use it, study its source code, modify it, and redistribute it, all at no cost [23]. The
1https://github.com/

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:5

free distribution and open development practices enable, and often result in, collaborative and social
practices of developing and maintaining the software, attracting contributions from distributed
developers, many of whom are volunteers [3, 23, 30]. For this reason, open source projects have
been described as instances of “peer production” [3]. Today several open source software projects
have become essential digital infrastructure that individual developers as well as commercial firms
rely on [3, 14, 16]. Despite growing commercialization and paid development work in open source
projects [17], many projects continue to rely heavily on volunteers [9, 15, 65].
With its collaborative and social practices, contemporary open source software development

occurs primarily through social coding platforms [12, 13], most notably GitHub. Social coding
platforms provide code hosting capabilities and social features that support collaboration [13].
This includes features that increase visibility into development activity [12] as well as channels
for communication [13]. On GitHub, which is the most popular social coding platform [25, 34],
projects are organized as repositories; a project’s repository contains its source code and hosts the
conversations surrounding the project. Permissions to make commits (applying a code patch) to
the hosted version of the source code are restricted to those designated as owners or collaborators
on the repository. Developers who do not have such permissions, can nonetheless author code
patches and work with owners or collaborators who can apply the patches on their behalf. In this
work, we use the term ‘contributor’ to mean any developer who has authored a code patch that
has eventually been applied to the hosted version, and the term ‘maintainer’ to refer to the subset
of contributors who have commit permissions. Any developer interested in keeping track of a
project can star the repository. In each repository, developers who are contributors or users can
track ideas, feedback, tasks, and bugs by creating issues. When a developer hopes to contribute a
code patch to the project, they can open a pull request, a special issue that hosts conversations
concerning the contribution. Activities on GitHub leave public traces. This provides visibility into
software development activities at the level of actions provided by GitHub, and the underlying Git
version control system [13].

While development activities take place on GitHub, use often occurs elsewhere. Many projects
are part of a larger “software ecosystem” [5, 55], which Bogart et al. define as “communities built
around shared programming languages, shared platforms, or shared dependency management tools,
allowing developers to create packages that import and build on each others’ functionality” [5].
Within an ecosystem (e.g. npm which is the JavaScript ecosystem or PyPI which is the Python
ecosystem), each project is packaged for use, indexed and advertised in a registry, and made
available for installation via a package manager [5], which a user can access through a terminal in
their development environment. It is through this distribution channel [36] that many projects are
consumed, often from within a development environment.

2.2 Barriers to expressing appreciation in open source
Within developer communities [21, 32, 39] as well as academic literature [25, 40, 46], there is
growing recognition of how working in open source projects can often feel demotivating and
stressful. Open source practitioners have shared experiences [21, 32] about how their interactions
with users can feel like a “constant stream of negativity” [32]. One reason why interactions can
feel overwhelmingly negative is that contributors rarely receive positive feedback and appreciation
from the users who benefit from their, often voluntary, labor. Nic Crane, a maintainer of Apache
Arrow, suggests: “We have lots of happy but quiet users” [39]. With little appreciation, contributors
are left facing a stream of user demands and requests, some of which are even aggressive in their
tone [40, 46]. In many discussions, the lack of positive feedback and recognition is often discussed
as a cause of demotivation and burnout [25, 39, 46].

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:6 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

We suggest that many barriers to expressing appreciation stem from the fact that where users
might feel appreciation (in their development environment) and what they might feel appreciation
towards (a package, its modules, or its functions) is detached fromwhere contribution activities occur
(GitHub) and what its units are (individual commits or pull requests). This impedes appreciation in
several ways:

2.2.1 Users must incur effort to navigate to existing communication channels and to locate whom to
thank. Channels for communicating with contributors are available on GitHub, where contribution
activities occur. But these are detached from users’ development environments, where the packages
are used. To contact contributors, users need to leave their development environment, find the right
GitHub repository, navigate to GitHub, and then either open an issue or locate the contributor’s
contact details. Users are more likely to undertake this effort to report issues since improvements
can directly benefit them than to express appreciation, from which they might not see any direct
benefits. This tendency for negative feedback over positive is also observed in consumer research,
showing that customers with bad experiences are more inclined to leave online reviews than
those with good experiences [2, 22]. Further, using GitHub’s affordances to discover and contact
contributors of individual commits or pull requests is straightforward because contribution activities
are organized along those low-level units. But affordances that are oriented towards commits or pull
requests quickly become ill-suited when a user wants to thank developers of the entire package or
its modules. A module, for instance, may combine several commits and pull requests. So, identifying
all relevant contributions, and their authors, can be prohibitively effortful. Because individual
commits or pull requests are abstracted away from users when they are working with a package,
we suggest it can be beneficial for appreciation systems to be oriented towards the abstractions
that users are exposed to—the package or its modules.

2.2.2 Existing communication channels de-emphasize appreciation because they were primarily
designed to coordinate contribution activities. In addition to supporting communication around
individual commits and pull requests, GitHub provides some support for communicating with the
project as a whole through issues and stars. However, the uptake of these features for communicating
appreciation is limited. This is because, in addition to being removed from where users are, these
affordances were also designed primarily to coordinate contribution activities, with values of
efficiency and productivity in mind. GitHub “Issues”2, for instance, are advertised as a way to
“track ideas, feedback, tasks, or bugs for work on GitHub”. To support effective tracking of tasks,
projects can further customize the feature to provide users default issue templates for common
communication such as bug reporting or feature requests3. Together, the name, advertised purpose,
and user defaults normatively discourage appreciation. With hesitation, motivated users still
reappropriate GitHub’s features to convey appreciation, as visible in issue #2264 in the react
boilerplate project4, which is titled: “I don’t know how to thank, and show my appreciation, to the
contributors on a good way”. GitHub users have pointed out how the reaction palette available
within issues and pull requests lacks emojis to convey the sentiment of “Thank you”5. While stars
can be used to convey appreciation, they are also intended to function as a bookmarking tool and a
way for the platform to learn user preferences6, which obscures the intention behind ‘starring’.

2https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
3https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-
issue-templates-for-your-repository
4https://github.com/react-boilerplate/react-boilerplate/issues/2264
5https://github.com/orgs/community/discussions/38201
6https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:7

2.2.3 Reduced visibility of contributors’ labor in the development environment diminishes apprecia-
tion. In his book “Exchange and Power in Social Life” [4], Blau argues that “only social exchange
tends to engender feelings of personal obligation, gratitude, and trust; purely economic exchange
as such does not.” In the development environment, the contributors and their labor are left out of
focus. So, it can be easy to forget that the package relies on the labor of its contributors. The pack-
age, then, can seem more like a free economic commodity [57] rather than a gift of labor [21, 54].
Because the labor of contributors is almost forgotten from the development environment, users
may fail to feel a sense of personal obligation or appreciation towards contributors.

To overcome the above barriers to appreciation in open source, our work: (1) attempts to develop a
cross-cutting communication channel that brings the ability to contact contributors—for which users
presently need to visit and search GitHub—to the development environment, where users work with
the packages; (2) attempts to support expression of appreciation in terms of the abstractions users
are exposed to—packages, modules, or functions—rather than lower-level units such as individual
commits or pull requests; and (3) attempts to provide users with a reminder of contributors’ efforts,
within the development environment.

2.3 Appreciation systems in peer production
There have been several efforts to develop appreciation systems for open source, as well as other
peer production contexts. Here, we identify the ways in which our work departs from these prior
efforts. By doing so, we describe how this work extends CSCW literature on designing appreciation
systems for the context of open source in particular, and for peer production contexts more generally.
Following Spiro et al. [53], we use the term “appreciation systems” to refer to platforms through
which users exchange thanks and praise. Here, we consider “appreciation” to include different
types of responses to receiving help, where the exchange involves unspecified obligations [4]. This
means the person who received help was not required to respond in a specific way beforehand.
Examples include appreciation messages, donations, and tips. Although the person may feel an
obligation to donate, tip, or say thanks, the exact nature of this obligation is usually not agreed
upon in advance [4, 52]. Following from this criteria, we do not consider “bounties” as appreciation
since the reward or compensation is agreed upon in advance.
Our approach departs from prior attempts to support appreciation in open source by explicitly

accounting for the manner in which software is ultimately used in the development environment.
Prior work has studied several systems through which users of open source software can convey
appreciation [44, 62]. This includes donation platforms such as PayPal, Patreon, and OpenCollective
which projects may link to from their repositories [44]. Similarly, GitHub has the ‘Sponsors’[50]
feature through which users of the platform can sponsor individual developers. The ‘Say Thanks’7
project provides a link that contributors can include to the repository of a project, and that users
can visit to send messages of appreciation. However, much like the GitHub features we described
in the previous sections, all of these appreciation systems are detached from where software use
occurs—the development environment. As a result, they present many of the barriers that we
described in the previous section. By developing an appreciation system that is fine-tuned to
users’ development practices, we investigate the potential benefits of such an approach as well as
cross-cutting concerns that arise in its implementation. Developing an appreciation system that
connects to the users’ development environment also alllows us to investigate how appreciation is
experienced and expressed by users. This allows us to further extend prior literature because prior
studies tend to focus solely on the experiences of the contributors receiving appreciation [44, 50]

7https://github.com/BlitzKraft/saythanks.io

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:8 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Our approach tries to enable users to express appreciation in terms of the abstractions they
are exposed to—the package or its modules—rather than lower-level units of contribution such as
individual commits or pull requests. This distinguishes it from some existing appreciation systems
in peer production that restrict users to expressing appreciation towards individual units of work.
Consider Wikipedia’s “Thanks” system [18, 38], through which editors can thank each other. A
"thank" link is shown next to each edit in the history view of an article. Clicking the link triggers a
notification to the author of the edit. However, having to thank individual edits can be limiting
when users want to express appreciation towards a group of edits, a paragraph, or a section. One
comment on the talk page for Wikipedia’s “Thanks” system notes: “Sometimes I’d like to express
thanks for a group of edits — for example, when none of them is individually a big deal, but
together they’re really helpful. Any chance that we could get the chance to issue a single Thanks
feature notice for a group of edits?”8. Our work adapts what users can thank to the form in which
they consume the artifact (packages/modules) rather than the unit of production (pull requests or
individual commits). We investigate the merits of such adaptation and reveal the constraints and
requirements it entails. This allows us to derive implications for designing appreciation systems
in other peer production contexts where units of work may be misaligned with what users feel
appreciation towards.

2.4 Lowering effort in expressing appreciation while preserving meaningfulness
Central to our approach is the idea of lowering the effort for users to express appreciation, by fine-
tuning the system to the manner in which software is used in the development environment. Before
we can proceed, however, we must address an apparent dilemma: while lowering the effort involved
in expressing appreciation may encourage appreciation, it can also undermine its meaningfulness.
While low-effort actions can encourage interactions, prior work suggests these interactions can
feel limited in the authenticity [42, 61] and support [58] they convey. Is lowering effort bound to
dilute the meaningfulness of appreciation?

Prior work offers a resolution to this dilemma by pointing out how some kinds of effort are not
considered meaningful. In the context of interpersonal communication, Markopoulos distinguishes
between procedural effort, which he describes as “the effort that one needs to expend in order to
operate a system” [37] (examples in our context would include logging in, navigating to a repository,
finding individual commits) and personal effort, which he describes as “the effort put to attend
personally to an individual” [37] (which in our context would be composing a thoughtful message).
Prior work suggests procedural effort tends not to be valued [37, 61] and that it can be minimized
to create greater opportunities for personal effort, which is what makes the communication feel
special to recipients [37, 48].
In our work, it is specifically the procedural effort that we attempt to lower. Our approach

attempts to lower procedural effort by locating a communication affordance within the code editor
and by allowing users to express appreciation at the level of packages, modules, or functions rather
than individual commits or pull requests. At the same time, we give users control over the amount
of personal effort they invest by allowing them to customize their appreciation messages.

3 Hug Reports Concept Proposal and Study Overview
3.1 Concept proposal

8https://en.wikipedia.org/wiki/Help_talk:Notifications/Thanks/Archive_2

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:9

In envisioning solutions that would overcome barriers in expressing appreciation, we arrived at a
conceptual design proposal for the Hug Reports9 system, a unidirectional communication system
that would afford users the ability to select a package currently in use and direct a “thanks” towards
contributors from within their code editors. The affordance would allow users to direct thanks
towards entire packages (e.g. matplotlib), their modules (e.g. pyplot), or specific functions within
those modules (e.g. pyplot.scatter). To map the thanked packages to contributors, we planned to
use activity traces from GitHub repositories corresponding to the packages to identify the relevant
contributors. Finally, we would deliver the “thanks” to contributors on behalf of the users.

The key decisions in Hug Reports were to: (1) lower procedural effort by locating a communi-
cation affordance within the code editor and allowing users to express appreciation at the level of
packages, modules, or functions rather than individual commits or pull-requests; and (2) provide
users a subtle reminder of the contributors through the material presence of the affordance
in the code editor. As we describe in Section 2.3, these decisions differentiate our approach from
prior appreciation systems, especially those in open source. So, we wanted to investigate the merits
of these key decisions. At the same time, due to our departure from previous approaches, we
anticipated that unexpected cross-cutting constraints and requirements would reveal themselves
when an end-to-end system is deployed.

3.2 Overview of method and research questions
At this early stage of the design process, then, we required a method to assess the feasibility of the
approach and to identify cross-cutting concerns. We wanted to rapidly explore the design space
and iterate on our design concept while reducing the risk of developing an end-to-end technical
system that users and contributors did not ultimately want So, we chose to use the method of
technology probes. As per Hutchinson et al. [26], technology probes are functioning technological
artifacts that balance three goals: social science: “understanding the use and the users”; engineering:
“field testing the technology”; and design: “inspiring users to think of new kinds of technology
to support their needs”. Technology probes are often used in the design of social applications, to
engage participants early in the design process [27, 28, 33, 49] and to find out about the “unknown”
when deployed [26]. So, we chose to develop a barebones version of Hug Reports as a technology
probe and deploy it in a field study to address the following research questions:

RQ1—How do the key decisions of Hug Reports impact expression of appreciation? To what
extent does lowering procedural effort encourage users to express appreciation? To what
extent does reminding users of the contributors encourage users to express appreciation? To
what extent do contributors find the appreciation meaningful? (This RQ revolves around the
probe’s goal of “field testing” the key decisions.)
RQ2—How is appreciation felt, expressed, received, and interpreted? How did users express
appreciation, in terms of when they felt appreciation, what they felt appreciation towards,
and how they articulated it? How were contributors’ perceptions of the appreciation affected
by what was being appreciated and how appreciation was articulated? (This RQ revolves
around the probe’s goal of “understanding the use and users”.)
RQ3—What opportunities do users and contributors envision for supporting appreciation? (This
RQ revolves around the probe’s goal of “inspiring users to think of new kinds of technology
to support their needs”.)

In our research activities, we planned to involve two populations of participants: users of
open source software packages and contributors to open source software packages. Hereafter,

9We chose the name to suggest an inversion of the concept of bug reports in software development, which are intended to
convey critical feedback.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:10 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

we slightly overload terms and refer to participants whom we planned to involve/were
involved in their capacity as users, simply as “users”. Similarly, we refer to participants
whom we planned to involve/were involved in their capacity as contributors to packages,
simply as “contributors”. For the study, we decided to develop realistic versions of the two
participant-facing components of the concept: an extension for code editors through which users
would express appreciation and the notification system that would convey the appreciation to
contributors.

3.3 Considerations in implementing the probe and designing the study
Implementation of our technology probe and the design of the study were guided by the following

factors:
(1) Naturalistic interactions. Our study prioritized external validity by allowing naturalistic

interactions: contributors would only see “thanks” sent by actual users and users’ “thanks” would
actually be sent to contributors. Users in the study were informed of the eventual audience of their
messages and contributors were informed of the origin and conditions under which appreciation
was expressed. The consequence of this was that we had lower control over factors such as which
packages were thanked, and what users said in their thanks messages. This also meant, we could
only notify, and therefore recruit to our study, contributors who were actually thanked by users in
the course of the study, regardless of the size of that population and demographic distribution.
(2) Minimizing disruption to contributors. Since contributors would only learn about the

study through the notifications they received, we decided to deliver these privately via individual
emails to avoid potential reputational effects of public notifications. To minimize disruption, we sent
only one aggregated notification to each contributor with “thanks” across a period of time, rather
than notifying them each time a “thanks” was received. This decision resulted in a sequencing
of research activities: first, a deployment of the code editor extension with users, followed by
notifying the contributors. Finally, we decided to limit the notifications to recent contributors so
as to not disturb past contributors who might have disengaged from the project. As a starting
point, we decided to send notifications to only the 20 most recent contributors of the thanked
software, if there were more than 20 unique contributors. Both users and contributors were made
aware of this heuristic throughout the study. The decision to send the thanks after aggregation
and the decision to notify the 20 most recent contributors were simple options that met our study
requirements and allowed us to deploy a working probe to investigate our research questions. We
do not intend to suggest that these are the best choices for a final appreciation system (see our note
on implementation details in Appendix A).
As a result of these considerations, we decided to pursue our probe development and study

activities sequentially: first, we deployed the editor extension with users, and then we aggregated
the thanks messages and notified contributors.
4 Study
In the next section, we describe: (1) the Hug Reports code editor extension; (2) our deployment
of the extension with users and research activities aimed at them; (3) our procedure of notifying
contributors, and research activities aimed at them; and (4) the strategies we used to analyze the
collected materials. This study was approved by our university’s Institutional Review Board.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:11

Fig. 2. Hug Reports extension user flow. A button ( ) is rendered on every line of the file that interfaces
with an imported package. Right-clicking the button (1) pulls up a contextual menu with the option to “Say
Thanks”. Clicking the option (2) logs a thanks to the cloud database, after which users are shown a success
message with the option to “Say More” (3). If they click “Say More” (4), they are redirected to a web form
where they can type out a personal note that is then logged to the cloud database.

4.1 The Hug Reports extension
We developed an extension for the Visual Studio Code (VS Code) editor that allows users to express
appreciation to developers of Python and JavaScript/TypeScript packages that they are using10. It
also allows them to specify whether the object of their appreciation is the entire package, specific
modules, or functions within the package. The extension is activated whenever a Python (.py),
JavaScript (.js, .jsx), or TypeScript (.ts, .tsx) file is opened. The user flow of the extension
is described in Figure 2. The main communication affordance of the extension is a button ( )
that is rendered in the gutter, on every line of the file that interfaces with an imported package.
The button is present next to imports of entire packages (e.g. “import Quill from "quill";”),
imports of specific modules (e.g. “from matplotlib import pyplot as plt”), as well as lines
where a function from the package or module is being used (e.g. “img = cv2.imread('watch.jpg
',cv2.IMREAD_GRAYSCALE)”). When a user right-clicks the button on a given line, it displays a
contextual menu with an option to “Say Thanks”. Clicking that option logs a thanks along with
the line of code, which is used as a representation of the object of the user’s appreciation. Clicks
next to the import of a package are treated as thanks directed at the package as a whole. Similarly
clicks next to imports of modules, and next to function calls, are treated as being directed at the
module and function respectively. The thanks itself, is a one-bit signal of appreciation, similar
to a “like” or “upvote”. A modal pop-up notifies the user that their thanks has been logged and
gives them the option to “Say More”. Clicking “Say More” redirects them to a web form in their
browser where they can type out a longer personal note. Users are not required to create an account.
The thanks as well as personal notes do not identify their author; they are only associated with an
installation ID, which is uniquely assigned for every installation of the extension. Each thanks is
logged to a database and is associated with the installation ID of the user, the line number, the line
of code, and a personal note if provided. Our implementation is available at: https://github.com/Hug-
Reports/hug-reports-extension-v0. Implementation notes are in Appendix A.

10JavaScript and Python are the most commonly used programming languages according to the 2023 Stack Overflow
Developer Survey [43]. Similarly, we chose to develop an extension for Visual Studio Code because it is the most popular
development environment [43].

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://github.com/Hug-Reports/hug-reports-extension-v0
https://github.com/Hug-Reports/hug-reports-extension-v0


CSCW099:12 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Participant Age Gender
Programming
proficiency
(self-report)

Weekly hours spent,
on average, writing
Python, JavaScript,
or TypeScript code
(self-report)

U1 23 Man Advanced 10
U2 28 Man Advanced 10-15
U3 26 Man Advanced 5+
U4 25 Woman Intermediate 15-20
U5* 24 Woman Advanced 40
U6 28 Woman Advanced 20-30
U7 27 Man Advanced 8
U8 25 Man Intermediate 25
U9 26 Woman Advanced 5
U10 28 Man Intermediate 20
U11* 29 Man Advanced 7
U12 25 Man Expert 40
U13 24 Woman Advanced 10
U14 24 Man Advanced 28
U15 23 Man Advanced 10
U16 30 Man Intermediate 45
U17* 27 Woman Advanced 20
U18* 26 Man Advanced 20

Table 1. User demographics. The asterisk identifies users who completed the deployment requirements but
did not participate in interviews.

By providing a communication affordance within the code editor, and allowing users to express
appreciation at the level of packages, modules, or functions rather than individual commits or pull
requests, the extension lowers procedural effort in expressing appreciation. We chose to present the
communication affordance via a persistent button on the interface to provide users with a subtle
reminder of the contributors.

To offer users flexibility in howmuch personal effort they invested, we chose the simple approach
of capturing appreciation in the form of thanks and personal notes. This draws on the canonical
approach of having a lightweight interaction (e.g. likes and stars) alongside an interaction for more
personal effort (e.g. comments and reviews), which is common on other social platforms. Although
we chose a simple and common approach to accomplish this flexibility, we note that other equally
good options are likely available. For the purpose of the study, thanks and personal notes were
captured anonymously. Since our research questions did not primarily concern author identities,
we chose the option that led to data minimization and system simplicity.

4.2 Deployment with users
4.2.1 Participants. Like other design methods introduced early in the design process, field studies
of technology probes focus on producing a rich qualitative account rather than statistically valid
results [26, 33, 64]. These considerations suggest a sample size that balances the researchers’ abilities
to do deep qualitative analysis with the ability to observe diverse participant experiences [49].
Previous work in CSCW, for instance, has used a dozen dyads [33]; some prior work suggests a
sample of about 10 participants [33]. To achieve a sample size in this range while accounting for the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:13

likely scenario that not all participants might complete all research activities, we halted recruitment
when we had onboarded 18 participants to the study. We recruited users through flyers distributed
across the campus of a private university in the United States. Flyers were also distributed within
the university community (through Slack channels and personal contacts) and publicly via Twitter.
Two criteria were used to screen potential participants. We required that they primarily use

VS Code as their development environment and that they anticipated writing Python/JavaScrip-
t/TypeScript code at least 3 times a week. The screening survey also included questions about
users’ demographics and backgrounds. Responses are summarized in Table 1. The 18 users (12
men and 6 women) were aged 23-30. The survey asked users to report their experience levels as
either Beginner, Advanced Beginner, Intermediate, Advanced, or Expert (categories present in
the developer skill matrix). As Table 1 shows, users described themselves as Advanced (13/28),
Intermediate (4/18), and Expert (1/18). We also asked users to report their weekly average of the
amount of time they spent writing code, which ranged from 5 hours to 45 hours a week.

4.2.2 Procedure. We deployed the extension for three weeks so that users would have sufficient
time to familiarize themselves with it and explore how they might interact with it in the course of
their usual programming activities. To observe naturalistic use, required usage was deliberately
kept minimal; however, we still encouraged (without enforcing) users to engage with the extension
a meaningful amount so that they had opportunities to reveal their experiences, and so that there
would be sufficient messages with which to understand contributor experiences. Each user was
required to participate in a 15-minute onboarding session conducted over video call, during which
we helped them install the extension and provided a brief tutorial. During this session, they were
also required to complete a brief pre-study questionnaire that asked them to provide: (1) an open-
ended response describing how often they typically thanked contributors of packages they used; and
(2) a rating on a seven-point scale (strongly disagree to strongly agree) indicating their agreement
with the statement: “There are many developers whose work I am grateful for.” These questions
were intended to capture their current feelings and practices of expressing appreciation. These
are presented in Table 3 (Appendix B) to provide more detail about the participant population.
At the end of the onboarding session, we encouraged users to send thanks at least two times
every day they found themselves coding while expressing that this would not be enforced. Users
were compensated $20 for participating in the onboarding session and completing the pre-study
questionnaire. During the three weeks, for every thanks, the extension logged the installation ID11,
line of code, line number, and personal note if added. We planned to use the thanks logged over the
course of the deployment to pursue our research activities with contributors. We also planned to
analyze usage patterns to address RQ2. To further investigate our research questions, at the end of
the three weeks, we invited all 18 users to participate in a one-on-one interview, 14 of whom agreed
to participate (those who did not are indicated in Table 1). Interviews were conducted in English,
remotely via Zoom, and lasted between 20 and 50 minutes, for which users were compensated
$15. Interviews were semi-structured and investigated factors that contributed to users’ feelings
of appreciation and decisions to express it, the experience of selecting what to thank and what
to include in personal notes, trends in their usage, and feedback on the interface and interaction.
Across these topics, we asked users if there were ways in which different or new designs could
have better supported their experience. All interviews were recorded and transcribed.

11For the purpose of the study, we established a link between participants and their installation IDs during the onboarding
session.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:14 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

4.3 Notifying developers
At the end of the three-week deployment, we parsed and cleaned the extension’s event data.
Together, the 18 participants logged 107 thanks, and 23 thanks included personal notes. For the
purpose of our study, we decided to map the thanks to the package repositories and contributors
manually. While we were aware of technical routes to attempt automating this12, we did not want
to expend significant effort on developing a robust algorithmic approach for the purpose of our
technology probe study. This was because the number of thanks were few enough to be manually
matched and further, we did not want to develop an algorithmic solution while other aspects of the
system were still malleable (e.g. we did not want to develop a solution to detect contributors to
modules or functions if the specificity was ultimately not found useful by users and contributors).

4.3.1 Identifying contributors: We first identified each unique object that was thanked (the content
of the line of code at which the button was clicked). For this process, we treated packages, modules,
and functions as separate objects since the 20 most recent contributors to each could be different.
Thanks logged next to the import of a package were treated as thanks directed at the package as a
whole. Similarly, thanks logged next to imports of modules, and next to function calls, are treated
as being directed at the module and function respectively. We note that each object could have
been thanked multiple times (e.g. “import cv2” was thanked twice). Corresponding to each unique
object, we maintained a count of the number of thanks it was associated with and all personal notes
associated with that object. We identified a total of 70 unique objects that were thanked, most just
once. We then mapped each object of appreciation to its source code on GitHub. Thanked packages
were mapped to their repositories, while thanked modules and functions were mapped to their
corresponding file. We used this to then find the 20 most recent contributors. For thanked packages,
we identified the 20 most recent contributors to the entire repository. For thanked modules and
functions, we identified the 20 most recent contributors to the corresponding file. Every commit,
contains an email address of the author of the code patch, which provided us with contact infor-
mation for the contributors. In determining the 20 most recent contributors, we skipped commits
where the provided email address was anonymized (emails ending in “users.noreply.github.com”).
If the total number of unique contributors was fewer than 20, we recorded all contributors. This
process resulted in a total of 550 contributors to be notified. 470 had been thanked for 1 object each,
with the remaining being thanked for 2 to 8 objects each.

4.3.2 Notification. As shown in Figure 3 (B), the notification was organized so that each segment
showed one object that the contributor had been thanked for (B1). Above the object, the notification
showed the number of thanks corresponding to it (B3). Below the object, we included any personal
notes associated with it (B4). The notification was delivered via an email (as shown in Figure 3
(A)) that provided the contributors with context about our project so that they could understand
the conditions under which the users had directed these thanks and personal notes towards them.
The design of the notification message was modeled after notifications in Wikipedia’s “Thanks”
system [38].

12The npm and PyPI registry link to the GitHub repositories for most packages. GitHub’s new search API, based on the
tree-sitter and stack-graphs library, makes it possible to map a function or class name to the corresponding file (usually
returning the file path as the top result). Further, GitHub’s REST API provides a way to retrieve a history of all commits for
a specific path, from which unique contributors can be identified. However, a fully automated solution is still technically
challenging. For instance, just from an import statement in Python, it’s not always possible to definitively differentiate
whether the imported entity is a function, class, or submodule but such differentiation is necessary before it can be mapped
to the path; the code search API is only apt for functions or classes, not submodules since it only returns files, not directories.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:15

Fig. 3. (A) The Hug Report notification was delivered via an email that provided the contributors with context
about our project so that they could understand the conditions under which the users had directed these
thanks and personal notes towards them. (B) The Hug Report notification, itself, was organized so that each
segment (B1) showed one object that the contributor had been thanked for (B2). Above the object, the
notification showed the number of thanks corresponding to it (B3). Below the object, were any personal notes
associated with it (B4)

4.3.3 Procedure and Participants. To understand contributors’ reactions to the notifications, the
email also included an invitation to participate in our study with a link to a survey. The survey
included questions on demographics including age, gender, programming proficiency, and their
tenure in the project for which they were thanked. It then asked contributors how they felt on
three single-item scales adapted from prior work [31]: (1) a scale ranging from -5 (much more
negative than normal) to 5 (much more positive than normal), with the midpoint of 0 labeled no
different than normal; (2) a scale ranging from -5 (not at all surprised) to 5 (extremely surprised);
and (3) a scale ranging from -5 (not at all awkward) to 5 (extremely awkward). We also included an
open-ended question asking contributors to further describe how the notification made them feel.
The survey included three more open-ended questions: (1) Prior to this, how often did you receive
messages of thanks from users? ; (2)What else would you have liked to know about the senders of these
thanks? ; and (3) Do you have any feedback for us that you would like to share? Finally, the survey
invited contributors to participate in an interview. There was no compensation for participating in
the survey and all questions on the survey were indicated as optional.

We received 26 responses to the survey (4.7% response rate). This included 23 men and 3 women.
Respondents were aged 21-56 (median age was 34). 13 respondents had been involved for less than
a year in the project for which they were thanked. Five respondents had been involved for 1-3
years, five had been involved for 3-5 years, and two respondents had been involved in the thanked
project for more than 5 years (1 respondent did not disclose their tenure). In describing our findings,
contributors who responded to the survey are labeled as C# (C1 to C26).

Of the respondents, 10 agreed to be interviewed. Interviews were conducted in English, remotely
via Zoom, and lasted 30 minutes. Interviews were semi-structured and focused on the experience
of receiving thanks, scoping of appreciation, approaches for attribution, frequency and form of
notifications, and their ideas for new or different design concepts. Contributors who participated in
the interview were compensated $15. One contributor, labeled C27, did not respond to the survey

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:16 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Participant Age Gender
Programming
proficiency
(self-report)

Tenure in project
for which they
were thanked

C5 23 Man Intermediate <1 year
C8 did not disclose Man Expert 1-3 years
C12 45 Man Advanced <1 year
C13 36 Man Advanced <1 year
C18 24 Woman Advanced 1-3 years
C19 30 Man Expert <1 year
C20 32 Man Advanced <1 year
C21 did not disclose Man Advanced <1 year
C23 did not disclose Man Expert <1 year
C27 did not disclose did not disclose Expert <1 year

Table 2. Contributors who participated in the interviews.

questions but agreed to be interviewed. Table 2 shows demographic information of contributors
who participated in interviews.

4.4 Analysis
We used the usage data collected from the extension deployment as one source of data to address
RQ2. From this, we created summary statistics of the interactions that took place. We also used an
affinity diagramming approach to group personal notes into categories, based on their content. We
used contributors’ responses to the survey, as one source of data to address RQ1 and RQ2. We
created summary statistics for responses to quantitative questions and used an affinity diagramming
approach to analyze the responses to open-ended questions. In this way, we used these two sources
of data to derive descriptive summaries of the behaviors of users and reactions of contributors.
We used the interviews to address RQ1, RQ2, and RQ3. To do this, we conducted a reflexive

thematic analysis [7]. Two of the authors independently performed a line-by-line open coding of
transcripts from the first 7 (out of the 14) user interviews and the first 5 (out of the 10) contributor
interviews. Codes generated in this phase were in part inductive, driven by the data, and in part
guided by our original research questions– we remained open to capturing observations that
emerged through the data while also looking out for observations that related to our main guiding
questions. All authors met to discuss the analysis and iteratively refined the codes, following which
the first author applied the refined set of codes to the remaining transcripts looking at whether
participant experiences fit into our existing categories. Finally, all authors discussed the analysis
to iteratively refine and solidify the themes, and group similar themes together. Themes were
generated at a semantic level, reflecting what participants explicitly said [7].

5 Findings
In this section, we begin with findings from the descriptive analysis of usage data and contributors’
responses to the questionnaire and survey (5.1). In it, we provide a descriptive summary of the
extension’s use and contributors’ reactions, addressing RQ1, and RQ2. Across the next subsections,
we present the main themes from our analysis of the interviews. In section 5.2, we first discuss
the extent to which key decisions of the extension encouraged meaningful appreciation (RQ1).
In sections 5.3, 5.4, and 5.5 we present findings that speak to RQ2, describing how appreciation

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:17

Fig. 4. Summary of users’ engagement with the Hug Reports extension. (A) The 18 users logged a total of 107
thanks. Thanks were expressed more often at import statements (72 instances) than other lines interfacing
with a package (35 instances). (B) Users included personal notes with their thanks on 23 occasions. (C) The
affordance was more often accessed near the start of a file than later on.

was felt, expressed, received, and interpreted. Section 5.3 describes the moments in which users
expressed appreciation. Section 5.4 describes the two meanings that appreciation took on: (1) as
a measure of utility, where the volume of thanks, and what it was directed at, were interpreted
as a signal of the software’s utility, and (2) as an act of expressive communication that intended
to convey a user’s gratitude. Users’ interactions and contributors’ interpretations depended on
which of the two meanings they prioritized in a given context (5.4). In section 5.5, we discuss how
contributors’ reactions were influenced by how much they felt they had contributed to the object
that was being appreciated. Finally, we present participants’ ideas (5.6) for further supporting
exchanges of appreciation, addressing RQ3.

5.1 Descriptive analysis
5.1.1 Patterns of use (RQ2). Over the course of the three-week deployment, the 18 participants
logged 107 thanks, and 23 thanks included personal notes There were considerable differences in the
frequency with which different users interacted with the extension (see Figure 4 (A) and (B)). We
found that the lines of code at which the affordance was clicked, we more often import statements
(72 instances) than other lines interfacing with a package (35 instances) (see Figure 4 (B)). Relatedly,
the affordance was more often accessed near the start of a file than later on (Figure 4 (C)).
Personal notes varied in their content. Some (7/23) stopped at expressing general sentiments of

gratitude towards the developers (e.g. “Thanks! I’m super relying on this!”, expressed at: “import
pandas as pd”). Some notes (6/23) additionally described how they appreciated the general
functionality the package was intended to provide (e.g. “Numba made my pandas code so much
faster!”, expressed at: “from numba import njit”). 5 of the 23 notes, appreciated specific design
choices made by contributors, such as supporting interoperability with other utilities, helpful error
messages, and effective organization/modularization (e.g. “Thanks for making this library work so
well with numpy so I don’t have to write much extra code to support sparse matrices!”, expressed at:
“from scipy import sparse as sps”). Three of the notes mentioned the ways in which users
were personally using the packages in their work (e.g. “This has been so useful for our project. We’re
trying to do satellite localization using a camera and we’re essentially just fine-tuning your model

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:18 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Fig. 5. Summary of contributors’ responses to the survey. We include some contributors’ responses to the
open-ended questions in the survey to provide further context for some responses. (A) Most contributors
reacted positively to the notification, and only 1 participant reacted negatively (whose survey response
suggests it was because they found the thanks and personal note too generic). (B) Most contributors were
surprised to receive the notification, however, few contributors who belonged to large projects were not.
(C) Most contributors felt no or low levels of awkwardness being appreciated. One contributor, who felt
‘extremely awkward’ noted that receiving a ‘hug’ from a stranger felt awkward.

on our dataset and wrapping it around a state estimator. It works so well!”, expressed at: “from
ultralytics import YOLO”). In two notes, users revealed aspects of their background that shaped
their appreciation (e.g. “I’m not a machine learning/computer vision scientist. OpenCV has helped
me a lot with video processing!”, expressed at: “import cv2”). Finally, two notes expressed general
sentiments of appreciation towards the organization working on the package (e.g. “Thanks folks at
Microsoft for making TypeScript”, expressed at: “import * as ts from 'typescript';”).

5.1.2 Contributors’ responses (RQ1, RQ2). Overall, contributors reacted positively to receiving
appreciation. Contributors hoped to know more about why they were being thanked and would
have liked more personalized messages. Some contributors didn’t feel like they deserved the
appreciation if they hadn’t substantially contributed to the package for which they were thanked.
Figure 5 summarizes the responses we received to the survey, from 26 contributors. 14 contributors
reported that receiving the notification made them feel more positive than normal (Figure 5 (A)), 11
reported feeling no different than normal, and only 1 participant reacted negatively (whose survey
response suggests it was because they found the thanks and personal note too generic). Responding
to how often they currently received appreciation, most contributors reported it was rare, some

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:19

suggesting they received “a few per year” (C15), such as in “GitHub Issues once every couple months”
(C13) or “once a feature request is closed, primarily with emojis, and it is extremely rare to get a text
message” (C23). Participants further described how the notification made them feel. One mentioned
how “receiving the hug report was a wonderful surprise, and brightened [their] day” (C3), while
another mentioned they “felt happy and feel motivated to do more” (C1). One contributor explicitly
mentioned how current channels for appreciation are few: “receiving thanks for open-source work
felt nice and very new since I experienced it very rarely so far. Part of why it is so rare may be that
there are no convenient and established ways to do so” (C20). However, few contributors noted
how there was “nothing personalized about the report” (C9). Without a more specific message, C18
mentioned: “although I do appreciate the feedback, I don’t feel personally touched”. Contributors
described wanting to know more about why they were being thanked and what users were using
their packages for (e.g. “more than the one sentence of thanks, what was useful for them that they
were thanking for?” (U19) and “having a rough idea about types of projects my features are used for
is quite beneficial.” (C23)). Most contributors were surprised to receive the notification (Figure 5
(B)), however, few contributors who belonged to large projects were not. Most contributors felt no
or low levels of awkwardness being appreciated (Figure 5 (C)). Some participants felt awkward
because they did not feel they had contributed significantly to the project for which they were
being thanked (we discuss this further in 5.5). One contributor, who felt “extremely awkward” noted
that a ‘hug’ from a stranger felt awkward (quote in Figure 5).

5.2 Hug Reports encouraged appreciation that was still meaningful to users and
contributors (RQ1)

5.2.1 The button served as an ambient reminder of contributors’ effort. Many users felt the button
in the gutter made them grateful more often, which was described as a welcome feeling:

“I think a lot of times I’m kind of just like in the weeds programming and you kind
of forget that the code that you’re using is someone else’s code ... with that like task
oriented mindset, it can be hard to pop up a level and actually appreciate the effort that
someone else went through to produce this code. The humanizing factor, I think, is
critical to make like necessity of expressing gratitude like real. Even if I’m not actually
pressing the thanks button all the time, having the reminder that these are the packages
I’m using and there are real people that made them ... even having that mindset as a
byproduct of having the extension installed is nice.” (U6)

U15 described how his sense of gratitude extended beyond the packaged code that the extension
supported:

“That was actually something interesting that the tool made me mindful of...that there
are contributors to my development experience that I wasn’t necessarily thinking
of..like what else is going on in the environment I use. Oh, ZSH! I never think to thank
ZSH! Or the maintainer of Brew.” (U15)

Users suggested the reminder supported their own intentions to be more appreciative (e.g. “I wish I
naturally thought about that more” (U6); “I appreciated it supporting the thing that I believe in” (U9);
and “I always want to be as gracious, or, you know, as grateful as the situation allows” (U15)).

5.2.2 Low procedural effort encouraged appreciation. Users also described how the extension made
it easier to express appreciation:“it’s pretty straightforward, just like one click away” (U8). Users felt
the extension made expressing appreciation more approachable than current channels:

“It felt like a nice opportunity for me to thank them without having to find out how
to contact them. Right now, you don’t have any way of sending thanks and so, if you

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:20 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

lower the barrier of sending thanks compared to ‘I have to find where to GitHub repo
is, and leave an issue’, I would assume it would increase the number of people who
actually send thanks.” (U2)

Further, users liked having the option to express appreciation as a thanks since it was low
effort enough that it didn’t disrupt their flow and it gave them a way to express appreciation
when they didn’t “know what to say” (U9). Contributors acknowledged this sentiment behind the
thanks: “I think it’s helpful. Because sometimes you don’t know what to say in a comment. You don’t
have something particularly meaningful, but you still appreciate it” (C12). 14 of the contributors
who responded to the survey had received only a thanks without any personal notes, 5 of whom
reported feeling no different than normal, 3 reported feeling much more positive than normal, and
the remaining 6 reported positive emotions in between the two. None of them reported feeling
negatively. Since the extension gave users flexibility in how much effort they could convey, C13
suggested: “in this hierarchy of showing support you go all the way from not doing anything to
supporting monetarily right? And somewhere along the rung, there is this, the starring of the GitHub
Repo. And at a slightly higher, more personalized level, there is thanking”.

5.3 Moments in which users expressed appreciation (RQ2)
5.3.1 Users engaged with the extension when they “came up for air”. Users described how they sent
thanks in moments of transition between tasks, or moments of “rest” (U7) between tasks. These
moments often coincided with transitions between files and so, import statements at the top, where
the file would open, were often the site where users sent thanks. U6 described these as moments
when she was “coming up for air”, elaborating:

I think [sending thanks] is something that I did when I wasn’t really in the middle of
any sort of programming task. Having them at the top, like with all the imports, is
kind of nice, because it’s naturally, where you kind of start within a file. So, if I open a
file I’m like, ‘oh, yeah there’s all these imports like I should thank them’. It’s like, I’m
already kind of in a paused state. I’m getting ready to do something, or I just finish
something.

When users were focused on a task, “the icon became sort of like a background noise” (U1). U2 and
U14 shared a similar reflection: “When I’m down in a file I really wanna focus on writing the code
rather than stopping and saying thanks” (U2) and “I didn’t really want to break my coding flow, so I
would usually club them once I had some part of some module running” (U14).

5.3.2 Users thanked packages retrospectively, repeating if they discovered new use cases. Even though
thanks was expressed at the top of the file, and in transitional moments, it was not expressed
preemptively. Users mentioned how they felt appreciative, and thanked packages, once they had
got them to work for their specific use case: “It’s like it did the thing. It has shown me that it can
do the thing. And this is a good thing” (U9). As U15 put it: “I wasn’t saying good idea, but good
implementation”. Similarly, U3 mentioned: “After I ran the code, then I would scroll up and say thank
you.”. U14 also described scrolling up retrospectively: “whenever I saw that I had completed one
module, I would just go at the top and see what modules I’ve used”. Further, users often described
feeling appreciative when they discovered new functionalities. U7 mentioned: “I’d like to say thanks
if I find something useful or something I didn’t know before. I think saying thanks sort of strengthens
my memory of my experience with that specific function.”. Users also mentioned how they would
be inclined to thank packages again if they found new use cases, suggesting that thanks can be
meaningfully different than one-time exchanges like starring on GitHub. U9 suggested: “I think if
there is a unique functionality that hadn’t been captured before, so like you know, I have use case A,
and then I find out there’s a use case B, I would definitely thank again.”

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:21

5.3.3 Broader rhythms in work influenced appreciation. Users described how their engagement with
the extension was also influenced by broader rhythms in their work, where they found themselves
more prone to reflection during certain periods: “I have my Tuesday meetings. I would just link
this to my meeting, and I was like after the meeting. I’ll do this. And so I would do this like bout of
thanksgiving(?)” (U10). U1 described how project cycles could also prompt reflection: “if I’m at the
end of a project cycle, then I might feel gratitude again”. U3 drew an analogy to borrowing a tool: “If
someone gave you a tool for you to use, I feel like you would say thank you to them once when you get
the tool and a second time when you return the tool.”

5.4 Two meanings of appreciation (RQ2)
Users and contributors interpreted appreciation as both: (1) a measure of utility, where the volume
of thanks, and what it was directed at, were interpreted as a signal of the software’s utility, and (2)
as an act of expressive communication that intended to convey a user’s gratitude. Users’ interactions
and contributors’ interpretations depended on which of the two meanings they prioritized in a
given context.

5.4.1 Appreciation as a measure of utility. Despite our small-scale deployment, users and contribu-
tors saw value in the quantitative metrics that could be derived from the thanks. Some contributors
envisioned metrics as being useful for providing external evidence of their own impact (e.g. “I
wish this was integrated with GitHub or LinkedIn badges. It would be good and motivational to share
it with my professional network” (C1)) as well as the project’s impact: “We would find it useful
because funding agencies want to know that...It’s only the funding people who are like ‘But are people
using this?”’ (C8). To access its informational value, contributors preferred a publicly shareable
aggregation of data (C19, C13). C13 suggested how the system could “keep aggregating the stats on
a website”.
When considering this interpretation of the thanks, some contributors found value in letting

users thank specific modules or functions. Few contributors also noted how this could provide a
deeper understanding of the software’s utility and could also be valuable for decision-making in a
project:

“That’s a very important metric for a maintainer, because they want to know which
parts of the project are well used, which parts are not that properly used, and it can
decide a lot of the trajectory of the project going forward.” (C21)

C27 described how this could provide a more representative statistic of use than currently available
metrics:

“In npm you’ve got those traffic stats like this got downloaded 500,000 times right. But
the reason a lot of packages get downloaded very often is because they are part of this
massive npm package that has 700 dependencies and you need to install all of them to
just use like 4 lines of code from the top-level directory but you never actually hit that
line of code. So you don’t end up using it, so to speak. this could be a slightly more
human-centric way of understanding that” (C27)

Users, when prioritizing this interpretation of thanks, saw lesser value in investing personal
effort, and focused more on providing contributors with an informative signal:

“I was definitely more biased to [sending thanks] on something versus personal notes. It
doesn’t matter how many people say your code is the best, in terms of being able to
use it for performance reviews or being able to prove its value. Some people are more
biased to numeric metrics, like how many people are watching your repository, or how
many people star your repository. Like okay, this will make them feel warm and fuzzy

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:22 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

but I really just want to give them something that they can use to prove that their code
is valuable to an external audience.” (U9)

5.4.2 Appreciation as an act of expressive communication. Users and contributors also saw apprecia-
tion as a personal communication of gratitude. When prioritizing this interpretation of appreciation,
contributors expressed how they would have liked to receive more personal effort:

“I much prefer hearing when a piece of code made a true difference to someone, e.g. if
they wrote ‘this function in [project] shaved two months off of my PhD’ or ‘this library
you wrote completely transformed the way we were able to execute our project’ or
even ‘I love the API you’ve designed so much!”’ (C9)

Other contributors also described how they would have liked to hear more specific messages, about
what the users were using the package for, and what the users appreciated.

While some personal notes did mention these aspects (5.1.1), many users struggled to find
something specific to say, in the moment, which led to them writing generic notes of appreciation
or prevented them from writing personal notes altogether. U7 mentioned he was uncertain about
what would make “good communication in this relationship between the user and contributor”. Other
users mentioned how it was a “bit tricky to explain why, I’m actually grateful” (U12) and how they
sometimes “didn’t have anything specific to say” (U6). U9 suggested: “it was difficult to know what to
say other than thanks. It’s a lot easier to write something when things go wrong.”

When considering thanks as a personal expression of gratitude, some users described how their
experiences were affected by the size of the anticipated audience of their thanks (U6, U12). In the
context of larger packages, these users felt that thanks scoped to the entire package were less
meaningful than thanks scoped to individual modules or functions.

5.5 Contributors’ reactions were influenced by how much they felt they had
contributed to the object that was thanked (RQ2)

Contributors felt that thanks was undeserved if felt they had not substantially contributed to
the thanked code. Even if contributors had made code edits to the part of the package that was
thanked, they felt it was undeserved if they did not feel a sense of ownership. For instance, in their
survey response, C20 described:

“The thanks I received were for a Python package that I happily used myself and
contributed a minimum amount to (two lines of code around two years ago or such).
Therefore, I don’t believe I deserve praise for my contributions. However, delivering
and receiving thanks gives me a good feeling, as I am happy for the actual contributors
to be acknowledged.” (C20)

Other contributors had similar reactions: “I’ve only submitted a few patches to [project]” (C24) and
“It was nice hearing that someone may have appreciated something done by me, but I’m not an active
contributor to that project” (C21). C21 further elaborated:

“It depends on my [sense of] ownership of that project. If that is above a certain
threshold, then that thanks is directly meaningful to me. So something like 5% or 10%
would be that threshold that comes to my mind. If I’ve written more than 10% of the
code in the project, I would want to know when someone is thanking the project.”(C21)

This is not necessarily a critical failure of Hug Reports. Some contributors felt that these “misfires”
were not an issue: “spreading the thanks signal out into the world is an example of something that,
even if it misfires, it doesn’t hurt and so, I don’t think that the misfires are necessarily bad” (C13).
C18 described how she “wouldn’t feel weird” if thanks were misdirected at her, further adding: “it

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:23

would be really easy for me to redirect it to the right person”. Still, we recognize that better-designed
heuristics for identifying relevant contributors can enhance the meaningfulness of the thanks.

5.6 Ideas from users and contributors (RQ3)
5.6.1 Nudges. Users proposed ideas of how the extension could encourage appreciation further.
For instance, U3 suggested having an ambient indicator of usage: “the button could glow or become
a bit more colorful if you have been programming with that package for a while, especially, you know,
if you have that package imported that you use a lot of different components from it.” U1 suggested
a similar idea: “simple threshold based things, after you’ve imported something 10 times, you show
like a little popup or in the status bar”. U2 mentioned how such reminders could make usage more
apparent: “These are not things that I realize until I see the statistics. So, it would be great to have
some feature that reminds me of that.” Further, U6 mentioned how the extension could also identify
which packages had smaller teams, as those would feel more meaningful to thank.

5.6.2 Opportune moments. Reflecting on patterns in when they tend to express appreciation, users
pointed out ways in which the system could harness opportune moments. U1 suggested: “every time
you open or close a file maybe you could get a pop up which says that, ‘oh, in this file you use these
things”’. U7 had a similar suggestion, mentioning how he would like such notifications to emphasize
new features he used that week. U9 and U10 mentioned how they would like to view statistics
of their use, at times that they could control (e.g. immediately after a specific recurring meeting),
either via a notification or dashboard. C12 suggested that if users were themselves publishing work
to GitHub, the end of project cycles could be opportune moments to remind users of the packages
they were using: “GitHub, has a feature where you say like, make a release right? You could tie an
action into that where it would say, ‘Oh, you’re making a release. Here are all the [packages] you used
in your project in this release”’ (C12).

5.6.3 Form and frequency of notifications. Contributors described how the form in which Hug
Reports were aggregated and presented could be broadened to support different use cases: “the
psychological benefits of it would be garnered more by sending the emails out, and the economic
benefits might be garnered better by putting it up on a website and sharing the link around” (C13).
Decision-making and fund-raising activities could benefit from more aggregated statistics: “from
the perspective of the project, we wouldn’t really care about the personal notes, because we would
aggregate over them anyway” (C8). Contributors also suggested venues to make the aggregate data
public, such as in project “release notes” (C8) and in individuals’ “GitHub profiles” (C27). C20 and
C18 also felt having a way to display on the project’s GitHub page, for example as “a GitHub badge”
(C18) would be nice: “on GitHub, I look at the number of stars, the number of different issues and so, it
seems the number of happy users, would also be a good metric” (C18)

5.6.4 Scaffolding for personal effort. Both users and contributors suggested it would be useful
to have prompts that could help users write more specific personal notes: “maybe giving some
instruction of like to users like, here’s an example. What you can write like here was my used case,
and why it was useful.” (U9). C19 suggested having something similar to product reviews that
ask users “what’s good about it? Is the make good? Is the design good?”. U3 suggested it could be
useful to be able to “send pictures, you know, especially if things are hardware related”. In his survey
response, C26 suggested having discrete pre-determined categories: “maybe a selection from a few
pre-determined thank-types. e.g. ‘I am using it for everything, thanks!’ or ‘Saved me a ton of time in
my current project”’.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:24 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

5.6.5 Heuristics for notifying contributors. Contributors suggested that accuracy in notifying
relevant contributors was less critical since misdirected thanks were acceptable. In fact, many con-
tributors suggested relaxing the criteria further. Some suggestions included sending “an automated
mail on the project mailing list” (C8) or notifying “all the people who have ever committed code” (C13).
C20 suggested:“people might just thank popular functionality of a package that you did not contribute
anything to but it can just go out to everyone...that seems like the most general approach.”

5.7 Summary of findings
Addressing RQ1, our deployment found that by lowering the procedural effort and by reminding
users of the contributors, Hug Reports encouraged appreciation in ways that were meaningful to
users and contributors (5.2, 5.1.2). Addressing RQ2, we described trends in usage (5.1.1), and con-
tributor’s reactions (5.1.2). Further addressing RQ2, the interviews revealed patterns in when users
expressed appreciation (5.3), how appreciation took on two meanings (5.4), and how contributors’
reactions were influenced by their perceived level of involvement (5.5). Finally, addressing RQ3, we
presented ideas proposed by users and contributors for how appreciation could be better supported
(5.6).

6 Discussion
Here, we begin by discussing how our work contributes new knowledge on designing appreciation
systems in peer production by exploring the implications of re-orienting appreciation around
abstractions of use. Then, we discuss how our work extends literature on appreciation in open
source by uncovering how appreciation is experienced and expressed by users in practice. Finally,
we discuss limitations of our work and directions for future work.

6.1 Opportunity and limitation of re-orienting appreciation around abstractions of use
Our approach tried to enable users to express appreciation in terms of the abstractions they are
exposed to—the package or its modules—rather than lower-level units of contribution such as
individual commits or pull requests. This made it unique from Wikipedia’s “Thanks” system which
captures appreciation towards individual edits. Our findings show how re-orienting appreciation
around packages and modules meant it aligned more with how users experience appreciation and
made it easier for them to express it. At the same time, shifting appreciation away from low-level
units of contribution limited the extent to which appreciation could serve as a form of individual
recognition. Here, we discuss the opportunity and limitations of this approach.

6.1.1 Opportunity: Encouraging collective recognition and improving visibility into usage. First, our
work suggests that capturing appreciation in terms of abstractions of use has the potential to
encourage more interactions. Even if it is difficult to derive individual recognition from such
appreciation, the fact that contributors reacted positively, suggests it could still provide a valuable
form of collective recognition. Further, it gives members of the project new insights into what
the project’s users appreciate. Many contributors in our study pointed out the value of thanks
as a source of information that could also support project-level decision-making. Taken together,
we suggest that this approach could be a valuable supplement to existing appreciation systems
that capture appreciation towards low-level units of work. Following the recommendations of
contributors in our study, it could be valuable to aggregate such appreciation and make it available
to members of the project, even if the system does not solve the challenge of individual attribution.

6.1.2 Limitation: Deriving individual recognition is challenging. Even though contributors reacted
positively to the appreciation they received, the extent to which they thought they had ‘claim’ to the
appreciation depended on how much they felt they had contributed to the work. This foregrounds

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:25

an important question: To what extent can systems derive individual recognition after capturing
appreciation around abstractions of use?
Prior work suggests that there is a limit to what automated approaches can accomplish. This

is because it is challenging to objectively determine a contributor’s relative impact based solely
on visible contribution activities. Visible activity traces may not reflect contributions such as
intellectual contributions [24], code review [60], governance [60], and fund raising [60]. Several
efforts have emerged to address this limitation. For instance, the All Contributors13 project aims to
standardize credit files and bring visibility to non-code contributions. Gitmoji14 aims to provide
a standardized way to annotate commits based on the kinds of contribution they are aiming to
make. Additionally, several researchers have recommended that team member roles be explicitly
recorded [1, 8, 47]. But until these approaches are adopted as a standard, there is unlikely to be
a generalized approach to deriving individual recognition. Systems attempting to do so would
have to work closely with individual projects and either: (1) share the messages of appreciation
with the project that members of the project can then redirect to appropriate contributors, or (2)
develop heuristics that are fine-tuned to each project based on its specific practices of recognizing
contributors (e.g. NumPy lists contributors in its release notes).
Finally, even if these approaches can more accurately ascertain a contributor’s relative impact

in objective terms, contributors may still feel uncomfortable ‘claiming’ the appreciation. This is
because a contributor’s sense of ownership may not always correspond to objective measures of
their impact in a collaborative effort. This is true of open source [45, 60], as well as Wikipedia [59].
We suggest that capturing appreciation in terms of abstractions of use can be a critical limitation in
contexts where individual recognition is paramount.

6.2 Encouraging appreciation in development practice
Our approach departs from prior attempts to support appreciation in open source by connecting the
appreciation system to the site where software is ultimately used—in the development environment.
Deployment of our probe revealed many regularities in how appreciation was experienced and
expressed by users. To the best of our knowledge, these findings are novel since prior studies tend
to focus solely on the projects and contributors receiving appreciation [44, 50]. These findings also
highlight new opportunities for encouraging appreciation.
Our study revealed how participants felt and expressed appreciation in moments of transition,

when they encountered new features, and in broader periods of reflection (5.3). Participants provided
several ideas of how Hug Reports could explicitly account for these patterns, such as by scheduling
interventions for when users are switching files or, on a broader time scale, when users are wrapping
up a project (5.6). Thus future designs can consider leveraging thesemoments to encourage reflection
and expression of appreciation.

Further, users proposed how different kinds of nudges could encourage them to express appreci-
ation more often (5.6). They suggested the system could indicate which packages they use most
often, and could also indicate which packages have a smaller number of contributors.

Even though contributors valued personal effort invested in the messages, many users struggled
to find something specific to say in the moment (5.4). Users and contributors both recognized the
value of having added scaffolding to make personal effort more approachable (5.6). The kinds of
scaffolding suggested include predefined categories of thanks, writing prompts, and even examples
of thoughtful messages.

13https://allcontributors.org/
14https://gitmoji.dev/about

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:26 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Across these proposals, however, it is important to note that even though reminders and writing
support may encourage appreciation, like any design that lowers effort, they can also limit the
meaningfulness of appreciation [35, 56]. It is important to recognize what effort is interpreted
as procedural, and what is interpreted as necessary for meaningful appreciation. Therefore, we
suggest future work is necessary to evaluate the merit of these ideas.

6.3 Limitations and future work
6.3.1 Limitations in the kinds of contributions considered. Our inquiry was limited to scenarios
where open source software use occurred through packages. Future work can explore whether and
how these approaches can be extended to other kinds of open source software such as end-user
applications and cookie-cutter templates. Further, we chose to focus on Python and JavaScript
packages because they are commonly used languages with large package ecosystems, and are
also languages we are most familiar with. Future work can explore extending this approach to
other programming languages/ecosystems. By relying on code activity traces, our work supported
appreciation of contributors who made code contributions to projects. However, this approach
overlooks many important non-code contributions such as documentation, governance, fund-
raising, and community-building. Hence, there is an opportunity for future research to investigate
how appreciation can be extended to non-code contributions.

6.3.2 Limitations in study methodology. Our inquiry was heavily influenced by field deployment
methods [51] and design methods [63] intended to produce rich qualitative accounts rather than
statistically valid results. As with other field-based design research, our observations are our own
and other researchers working with the same problem framing may create other artifacts or pursue
different design activities, arriving at other, equally relevant conclusions [64]. While our choice of
design methods does not allow for statistical validity, we believe our work offers opportunities for
what Zimmerman et al. describe as “extensibility” [55]: that future attempts to develop technological
support for appreciation, can build on our observations, and our artifacts. Our research was also
limited by the fact that users were encouraged to send thanks at least two times every day they
found themselves coding. This was to help ensure that each user would be able to try out the probe
long enough to understand how its features influenced their interactions, and how it fit into their
development practices, while also ensuring we would have a sufficient number of thanks with which
to study the experiences of contributors. This practice was consistent with other deployments of
probes [33], where similar to our study, research questions primarily concern participants’ own
descriptions and reflections rather than investigating voluntary adoption (“Will people use this
tool?” ). This is also consistent with field studies that are concerned less with investigating voluntary
adoption, which, as Siek et al. write [51], feature“artificial inducements for adoption and use in order
to focus on other factors such as the usefulness of specific system features, the appropriateness of
the system in the given social context, the ability of the system to be appropriated for particular
participant needs and practices, or the impacts of using the system on other factors, such as users’
behavior changes, work productivity, etc.” Nevertheless, we recognize this decision limits the kinds
of conclusions that can be drawn from our findings, and we follow the convention recommended
by Siek et al. [51], of reporting it in the study design, so that “readers can carefully analyze the
results in light of the compensation scheme” [51].

6.3.3 Studying the long-term impacts of appreciation. As a short-term technology probe deploy-
ment, our study could not investigate the long-term impacts of appreciation on motivation and
participation in open source projects. Prior work identifies lack of recognition as one of the reasons
due to which contributors disengage [19, 20]. Hence, there is an opportunity for future work
to investigate whether appreciation can increase retention. Further, prior work has also noted

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:27

that exchanges that make an individual feel socially attached to a community can be effective
at converting them into long-term contributors [29]. From this perspective, encouraging users
to express appreciation has the potential to increase their social attachment to the project and
eventually motivate them to contribute. Future work can explore whether and how exchanges of
appreciation can create and engage a community around software artifacts.

7 Conclusion
Contributors of open source software packages rarely receive appreciation from users. In this paper,
we observed how appreciation can be limited by the fact that where users might feel appreciation
(in their development environment) and what they might feel appreciation towards (a package,
its modules, or its functions) is detached from where contribution activities occur (GitHub) and
what its units are (individual commits or pull requests). We described a field study of the Hug
Reports technology probe that provided users with a communication affordance within the code
editor and allowed them to express appreciation in terms of the abstractions they are exposed to
(package, modules). Our findings showed how Hug Reports encouraged appreciation in ways that
were meaningful to users and contributors, how appreciation was interpreted both as a measure of
utility and as an act of expressive communication, and that contributors’ reactions to appreciation
were influenced by how much they felt they had contributed to what was thanked. In addition
to this, our study revealed patterns in when users expressed appreciation. We synthesized these
findings into implications for developing appreciation systems in open source in particular, and
peer production communities more generally.

Acknowledgments
We thank our anonymous reviewers for their feedback on the paper. We also thank Bart Duisterhof,
Tejus Gupta, and Akhil Padmanabha for feedback on the first iteration of the extension. This work
was supported in part by NSF grant IIS-2222854 and Google.

References
[1] Pierre Alliez, Roberto Di Cosmo, Benjamin Guedj, Alain Girault, Mohand-Said Hacid, Arnaud Legrand, and Nicolas

Rougier. 2019. Attributing and referencing (research) software: Best practices and outlook from Inria. Computing in
Science & Engineering 22, 1 (2019), 39–52.

[2] Eugene W Anderson. 1998. Customer satisfaction and word of mouth. Journal of service research 1, 1 (1998), 5–17.
[3] Yochai Benkler. 2017. Peer production, the commons, and the future of the firm. Strategic Organization 15, 2 (2017),

264–274.
[4] Peter Blau. 2017. Exchange and power in social life. Routledge.
[5] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When and how to make breaking

changes: Policies and practices in 18 open source software ecosystems. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30, 4 (2021), 1–56.

[6] Geoffrey Bowker, Susan Leigh Star, Les Gasser, and William Turner. 2014. Social science, technical systems, and
cooperative work: Beyond the great divide. Psychology Press.

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3,
2 (2006), 77–101.

[8] Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Jean-Gabriel Young, James P Bagrow, and Laurent Hébert-Dufresne.
2021. Open source ecosystems need equitable credit across contributions. Nature Computational Science 1, 1 (2021),
2–2.

[9] Kaylea Champion and Benjamin Mako Hill. 2021. Underproduction: An approach for measuring risk in open source
software. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
388–399.

[10] Albert Cherns. 1976. The principles of sociotechnical design. Human relations 29, 8 (1976), 783–792.
[11] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects fail. In Proceedings of the 2017 11th

Joint meeting on foundations of software engineering. 186–196.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:28 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

[12] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2012. Leveraging transparency. IEEE software 30, 1
(2012), 37–43.

[13] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: transparency and
collaboration in an open software repository. In Proceedings of the ACM 2012 conference on computer supported
cooperative work. 1277–1286.

[14] Nadia Eghbal. 2016. Roads and bridges: The unseen labor behind our digital infrastructure. Ford Foundation.
[15] Nadia Eghbal. 2020. Working in public: the making and maintenance of open source software. Stripe Press.
[16] R Stuart Geiger, Dorothy Howard, and Lilly Irani. 2021. The labor of maintaining and scaling free and open-source

software projects. Proceedings of the ACM on human-computer interaction 5, CSCW1 (2021), 1–28.
[17] Matt Germonprez, Georg JP Link, Kevin Lumbard, and Sean Goggins. 2018. Eight observations and 24 research questions

about open source projects: illuminating new realities. Proceedings of the ACM on Human-Computer Interaction 2,
CSCW (2018), 1–22.

[18] Swati Goel, Ashton Anderson, and Leila Zia. 2019. Thanks for Stopping By: A Study of “Thanks” Usage on Wikimedia.
In Companion Proceedings of The 2019 World Wide Web Conference. 1208–1211.

[19] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May, Geraldine J Noa-Guevara, Liam James
Russell, Griselda G Cuevas Zambrano, Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A Gerosa, et al. 2021. The
long road ahead: Ongoing challenges in contributing to large oss organizations and what to do. Proceedings of the
ACM on Human-Computer Interaction 5, CSCW2 (2021), 1–30.

[20] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022. Attracting and retaining oss contributors
with a maintainer dashboard. In Proceedings of the 2022 ACM/IEEE 44th International Conference on Software Engineering:
Software Engineering in Society. 36–40.

[21] Eran Hammer. 2021. The social contract of open source. https://snarky.ca/the-social-contract-of-open-source/
Accessed: 2024-01-07.

[22] Saram Han and Chris K Anderson. 2020. Customer motivation and response bias in online reviews. Cornell Hospitality
Quarterly 61, 2 (2020), 142–153.

[23] Eric von Hippel and Georg von Krogh. 2003. Open source software and the “private-collective” innovation model:
Issues for organization science. Organization science 14, 2 (2003), 209–223.

[24] James Howison and James D Herbsleb. 2013. Incentives and integration in scientific software production. In Proceedings
of the 2013 conference on Computer supported cooperative work. 459–470.

[25] Jane Hsieh, Joselyn Kim, Laura Dabbish, and Haiyi Zhu. 2023. " Nip it in the Bud": Moderation Strategies in Open
Source Software Projects and the Role of Bots. Proceedings of the ACM on Human-Computer Interaction 7, CSCW2
(2023), 1–29.

[26] Hilary Hutchinson, Wendy Mackay, Bo Westerlund, Benjamin B Bederson, Allison Druin, Catherine Plaisant, Michel
Beaudouin-Lafon, Stéphane Conversy, Helen Evans, Heiko Hansen, et al. 2003. Technology probes: inspiring design
for and with families. In Proceedings of the SIGCHI conference on Human factors in computing systems. 17–24.

[27] Matthew Jörke, Yasaman S Sefidgar, Talie Massachi, Jina Suh, and Gonzalo Ramos. 2023. Pearl: A Technology Probe
for Machine-Assisted Reflection on Personal Data. In Proceedings of the 28th International Conference on Intelligent User
Interfaces. 902–918.

[28] Pranav Khadpe, Lindy Le, Kate Nowak, Shamsi T Iqbal, and Jina Suh. 2024. DISCERN: Designing Decision Support
Interfaces to Investigate the Complexities of Workplace Social Decision-Making With Line Managers. In Proceedings of
the CHI Conference on Human Factors in Computing Systems. 1–18.

[29] Chelsea Kim and Hao-Chuan Wang. 2022. From Receivers to Givers: Understanding Practice of Reciprocity in an
Online Support Community. Proceedings of the ACM on Human-Computer Interaction 6, CSCW1 (2022), 1–17.

[30] Sandeep Krishnamurthy. 2006. On the intrinsic and extrinsic motivation of free/libre/open source (FLOSS) developers.
Knowledge, Technology & Policy 18, 4 (2006), 17–39.

[31] Amit Kumar and Nicholas Epley. 2018. Undervaluing gratitude: Expressers misunderstand the consequences of showing
appreciation. Psychological science 29, 9 (2018), 1423–1435.

[32] Nolan Lawson. 2017. What it feels like to be an open-source maintainer. https://nolanlawson.com/2017/03/05/
Accessed: 2024-01-07.

[33] Joanne Leong, Yuanyang Teng, Xingyu" Bruce" Liu, Hanseul Jun, Sven Kratz, Yu Jiang Tham, AndrésMonroy-Hernández,
Brian A Smith, and Rajan Vaish. 2023. Social Wormholes: Exploring Preferences and Opportunities for Distributed and
Physically-Grounded Social Connections. Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (2023),
1–29.

[34] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dabbish. 2021. Code of conduct conversations in open
source software projects on github. Proceedings of the ACM on Human-computer Interaction 5, CSCW1 (2021), 1–31.

[35] Yihe Liu, Anushk Mittal, Diyi Yang, and Amy Bruckman. 2022. Will AI console me when I lose my pet? Understanding
perceptions of AI-mediated email writing. In Proceedings of the 2022 CHI conference on human factors in computing

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://snarky.ca/the-social-contract-of-open-source/
https://nolanlawson.com/2017/03/05/


Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:29

systems. 1–13.
[36] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen.

2006. Managing the complexity of large free and open source package-based software distributions. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06). IEEE, 199–208.

[37] Panos Markopoulos. 2009. A design framework for awareness systems. Awareness systems: Advances in theory,
methodology and design (2009), 49–72.

[38] J Nathan Matias, Julia Kamin, Reem Al-Kashif, Max Klein, and Eric Pennington. [n. d.]. The Diffusion and Influence of
Gratitude Expressions in Large-Scale Cooperation: A Field Experiment in Four Knowledge Networks. ([n. d.]).

[39] Abby Cabunoc Mayes. [n. d.]. Maintaining Balance for Open Source Maintainers Tips for self-care and avoiding
burnout as a maintainer. https://opensource.guide/maintaining-balance-for-open-source-maintainers/ Accessed:
2024-01-07.

[40] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian KaUstner. 2022. " Did you miss my
comment or what?" understanding toxicity in open source discussions. In Proceedings of the 44th International Conference
on Software Engineering. 710–722.

[41] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu. 2019. Why do people give up flossing? a
study of contributor disengagement in open source. In Open Source Systems: 15th IFIP WG 2.13 International Conference,
OSS 2019, Montreal, QC, Canada, May 26–27, 2019, Proceedings 15. Springer, 116–129.

[42] Andrés Monroy-Hernández, Benjamin Mako Hill, Jazmin Gonzalez-Rivero, and Danah Boyd. 2011. Computers can’t
give credit: How automatic attribution falls short in an online remixing community. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 3421–3430.

[43] Stack Overflow. 2023. 2023 Developer Survey. https://survey.stackoverflow.co/2023/ Accessed: 2024-01-07.
[44] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan Vasilescu. 2020. How to not get rich: An empirical

study of donations in open source. In Proceedings of the ACM/IEEE 42nd international conference on software engineering.
1209–1221.

[45] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More common than you think: An in-depth study
of casual contributors. In 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering
(SANER), Vol. 1. IEEE, 112–123.

[46] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan Vasilescu. 2020. Stress and burnout in
open source: Toward finding, understanding, and mitigating unhealthy interactions. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging Results. 57–60.

[47] Frederike Ramin, Christoph Matthies, and Ralf Teusner. 2020. More than code: Contributions in scrum software
engineering teams. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops.
137–140.

[48] Natalia Romero, Panos Markopoulos, Joy Van Baren, Boris De Ruyter, Wijnand Ijsselsteijn, and Babak Farshchian.
2007. Connecting the family with awareness systems. Personal and Ubiquitous Computing 11 (2007), 299–312.

[49] Abigail Sellen, Richard Harper, Rachel Eardley, Shahram Izadi, Tim Regan, Alex S Taylor, and Ken R Wood. 2006.
HomeNote: supporting situated messaging in the home. In Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work. 383–392.

[50] Naomichi Shimada, Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi Matsumoto. 2022. GitHub sponsors:
exploring a new way to contribute to open source. In Proceedings of the 44th International Conference on Software
Engineering. 1058–1069.

[51] Katie A Siek, Gillian R Hayes, Mark W Newman, and John C Tang. 2014. Field deployments: Knowing from using in
context. Ways of Knowing in HCI (2014), 119–142.

[52] Adam Smith. 2010. The theory of moral sentiments. Penguin.
[53] Emma Spiro, J Nathan Matias, and Andrés Monroy-Hernández. 2016. Networks of gratitude: Structures of thanks and

user expectations in workplace appreciation systems. In Proceedings of the International AAAI Conference on Web and
Social Media, Vol. 10. 358–367.

[54] Tiziana Terranova. 2000. Free labor: Producing culture for the digital economy. Social text 18, 2 (2000), 33–58.
[55] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level determinants of sustained activity in

open-source projects: A case study of the PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 644–655.

[56] Jiabi Wang, Shereen J Chaudhry, and Alex Koch. 2023. Reminders undermine impressions of genuine gratitude. Journal
of Personality and Social Psychology (2023).

[57] David Gray Widder and Dawn Nafus. 2023. Dislocated accountabilities in the “AI supply chain”: Modularity and
developers’ notions of responsibility. Big Data & Society 10, 1 (2023), 20539517231177620.

[58] Donghee Yvette Wohn, Caleb T Carr, and Rebecca A Hayes. 2016. How affective is a “Like”?: The effect of paralinguistic
digital affordances on perceived social support. Cyberpsychology, Behavior, and Social Networking 19, 9 (2016), 562–566.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://opensource.guide/maintaining-balance-for-open-source-maintainers/
https://survey.stackoverflow.co/2023/


CSCW099:30 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

[59] Andrew Yim, Matthew Vetter, and Jun Akiyoshi. 2024. “I Don’t Feel Like It Is ‘Mine’at All”: Assessing Wikipedia
Editors’ Sense of Individual and Community Ownership. Written Communication 41, 3 (2024), 419–448.

[60] Jean-Gabriel Young, Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Laurent Hébert-Dufresne, and James P Bagrow.
2021. Which contributions count? Analysis of attribution in open source. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 242–253.

[61] Lei Zhang, Tianying Chen, Olivia Seow, Tim Chong, Sven Kratz, Yu Jiang Tham, Andrés Monroy-Hernández, Rajan
Vaish, and Fannie Liu. 2022. Auggie: Encouraging Effortful Communication through Handcrafted Digital Experiences.
Proceedings of the ACM on Human-Computer Interaction 6, CSCW2 (2022), 1–25.

[62] Xunhui Zhang, Tao Wang, Yue Yu, Qiubing Zeng, Zhixing Li, and Huaimin Wang. 2022. Who, what, why and how?
towards the monetary incentive in crowd collaboration: A case study of github’s sponsor mechanism. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems. 1–18.

[63] John Zimmerman and Jodi Forlizzi. 2014. Research through design in HCI. In Ways of Knowing in HCI. Springer,
167–189.

[64] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. 2007. Research through design as a method for interaction
design research in HCI. In Proceedings of the SIGCHI conference on Human factors in computing systems. 493–502.

[65] Frances Zlotnick. 2017. GitHub Open Source Survey 2017. (June 2017). doi:10.5281/zenodo.806811

A Implementation Notes
A.1 Note on implementation details
To go from a concept proposal to a working technology probe, in addition to the key decisions of
Hug Reports, we had to make choices for several low-level implementation details. Examples of
such choices include: (1) how often to notify contributors, and (2) whether the identities of senders
or receivers should be revealed to each other. Many options were available for such choices and
picking the best option for each of these choices would warrant its own investigation. Determining
the best option for these choices was also orthogonal to answering our research questions, which
evaluate the key decisions of Hug Reports and consider the cross-cutting requirements those key
decisions reveal. In such situations, we often chose the option that was the simplest to implement
within the constraints of the study. Our paper describes these choices for completeness, while
providing a reminder that other, potentially better, options are possible.

A.2 Extension implementation
The extension was written in TypeScript, using the VS Code API15 and Contribution Points16
for the core logic of the extension, and MongoDB Atlas17 to log interactions. First, all import
statements in the code were detected using a regular expression to capture all possible forms in
which a package, class, or function could be imported depending on the language (i.e. Python or
JavaScript/Typescript).
(1) Regular expression to capture imports in Python:
^(\s*(?:from\s+[\w\.]+)?\s*import\s+[\w\*\, ]+(?:\s+as\s+[\w]+)?)\b/gm

(2) Regular expressions to capture imports in JavaScript/Typescript (either using the “import” or
“require” keyword):
(a) /^import\s+.*\s+from\s+['"](.*)['"]/gm
(b) /(const|let)\s+\{?\s*([\w,\s]+)\s*\}?\s*=\s*require\s*\(\s*['"]([^'"]+)['"]\s*\)[^;]*;/g

From the lines that matched with these regular expressions, we extracted the names of the imported
package, submodules, functions, and classes and stored these in an array called names. We use
name to refer to each individual entry in the array. Beyond the import statements, to detect all
lines of the file that interface with an external package, we had to identify lines that contained
name.function(), name(), or name.attribute. To do this, for each line in the file, we tested if

15https://code.visualstudio.com/api/references/vscode-api
16https://code.visualstudio.com/api/references/contribution-points
17https://www.mongodb.com/atlas/database

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.

https://doi.org/10.5281/zenodo.806811


Hug Reports: Supporting Expression of Appreciation
between Users and Contributors of Open Source Software Packages CSCW099:31

the following patterns were present:
(1) To capture name.function() and name():
new RegExp(`\\b(?:${names.map(name => `(?:(?:${name})\\.\\w+|${name})`).join('|')})\\(`)
(2) To capture name.attribute:
new RegExp(`\\b(?:${names.map(name => `(?:(?:${name})\\.\\w+)`).join('|')})`)

We stored a list of all line numbers at which a match was found and then, rendered the gutter icon
using the setDecorations function provided by the VS Code API on the set of lines where imports
occurred and were used. For each rendered gutter icon, the “Say Thanks” option was configured
by registering a menu contribution point as provided by the VS Code API. The additional modal
pop-up to “Say More” was displayed using the showInformationMessage function provided by
the VS Code API.

B Participant Table
Additional demographic details of users are in Table 3.

Received January 2024; revised July 2024; accepted October 2024

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.



CSCW099:32 Pranav Khadpe, Olivia Xu, Geoff Kaufman, and Chinmay Kulkarni

Table 3. User demographics, their programming practices, and their current feelings and practices of express-
ing appreciation.

User Age Gender
Programming
proficiency
(self-report)

Hours spent
writing Python
or JavaScript
code per week
(self-report)

There are
many developers
whose work
I am grateful for
(seven point scale:
strongly disagree
to strongly agree)

How often do you thank developers of open source
projects you use?
(open-ended question)

U1 23 Man Advanced 10 Agree Never
U2 28 Man Advanced 10-15 Agree I hate to say this, but never :(

U3 26 Man Advanced 5+ Agree

Not often. If the projects are lesser-known, I would credit
them in my comments. However, if it’s a widely used
open-source project (e.g., opencv, three.js, etc.), I don’t
tend to do it.

U4 25 Woman Intermediate 15-20 Agree Almost never
U5 24 Woman Advanced 40 Agree Not enough :) We could do more in this domain.

U6 28 Woman Advanced 20-30 Agree

Not very often, unfortunately. I typically just download
whatever NPM package I need and feel more connected to
the package and my feelings towards the package (e.g., "Wow
this documentation is good", "I don’t like how this API is
designed", etc.) than towards the developers.

U7 27 Man Advanced 8 Somewhat agree Almost never

U8 25 Man Intermediate 25 Agree

There aren’t many existing mechanisms to thank developers.
Some developers have a buy me a coffee link. For me, I
sometimes comment a thank you message but I don’t
specifically reach out to the developers.

U9 26 Woman Advanced 5 Strongly agree 0 times ever

U10 28 Man Intermediate 20 Strongly agree Hardly ever.. I’ve only thanked people when I’ve met them
in person at conferences and such..

U11 29 Man Advanced 7 Agree

I’ve chatted with other developers in Discord spaces and
through GitHub pull requests. My best answer would be
sporadically - for anything during the interaction. Rarely
for an "overall" thanks for the body of work, or for the
overall project.

U12 25 Man Expert 40 Strongly agree Never
U13 24 Woman Advanced 10 Agree Very rarely, only if I know them personally
U14 24 Man Advanced 28 Agree Not often

U15 23 Man Advanced 10 Strongly agree

I’ve never thanked someone explicitly, unless I happen to
meet them in person, but I do often star useful or
interesting projects on GitHub, and will suggest relevant
projects to my peers.

U16 30 Man Intermediate 45 Strongly agree Rarely

U17 27 Woman Advanced 20 Strongly agree
I have never explicitly expressed my gratitude to the
developers of open source projects unless they’re friends
of mine.

U18 26 Man Advanced 20 Strongly agree
I think I used to thank developers a lot more when I was
still active in the open source space with [project]. But
haven’t done so any time recently.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW099. Publication date: April 2025.


	Abstract
	1 Introduction
	1.1 Approach
	1.2 Contributions

	2 Background and Related Work
	2.1 The sociotechnical system within which modern open source packages are produced and used
	2.2 Barriers to expressing appreciation in open source
	2.3 Appreciation systems in peer production
	2.4 Lowering effort in expressing appreciation while preserving meaningfulness

	3 Hug Reports Concept Proposal and Study Overview
	3.1 Concept proposal
	3.2 Overview of method and research questions
	3.3 Considerations in implementing the probe and designing the study

	4 Study
	4.1 The Hug Reports extension
	4.2 Deployment with users
	4.3 Notifying developers
	4.4 Analysis

	5 Findings
	5.1 Descriptive analysis
	5.2 Hug Reports encouraged appreciation that was still meaningful to users and contributors black(RQ1)
	5.3 Moments in which users expressed appreciation (RQ2)
	5.4 Two meanings of appreciation black(RQ2)
	5.5 Contributors' reactions were influenced by how much they felt they had contributed to the object that was thanked (RQ2)
	5.6 Ideas from users and contributors (RQ3)
	5.7 Summary of findings

	6 Discussion
	6.1 Opportunity and limitation of re-orienting appreciation around abstractions of use
	6.2 Encouraging appreciation in development practice
	6.3 Limitations and future work

	7 Conclusion
	Acknowledgments
	References
	A Implementation Notes
	A.1 Note on implementation details
	A.2 Extension implementation

	B Participant Table

